Linear-Programming Approximations of AC Power Flows

Carleton Coffrin and Pascal Van Hentenryck
NICTA and University of Melbourne
Outline

• Motivation
• The LPAC Models
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
• Power Restoration
Motivation

Collaboration with LANL
Motivation
Power Restoration

- One challenge (PSCC’11)
 - Schedule a fleet of repair crews to repair the grid and minimize the overall size of the blackout after a disaster

- Two fundamental aspects
 - Scheduling the repairs
 - Scheduling the power restoration
 - Both are challenging in their own right

- Assumptions for Last-Mile Restoration
 - Steady state behavior of the power grid
 - Ability to shed load and generation continuously
 - Transient/configuration aspects in a second step
Power Restoration

Restoration Timeline

Minimize

Increase in served demand

Component repair

Power Flow

Time
Power Restoration

- **Optimal Activation Problem**
 - Generalized optimal line switching [Fisher et al, 98]
- **Approximate the power flows equations**
 - Linear DC Model
- **Discrete optimization over the LDC model**
 - MIP solver
- **Solutions to large benchmarks [CPAIOR’12]**
 - 4000 components, a third of which were damaged
 - Using hybrid optimization (MIP + CP + LNS)
Optimal Activation

- find which items to activate
- find how much power to produce and consume
- find the phase angles at buses
- to maximize the served load

- Generalized optimal line switching [Fisher et al, 98]

\[
\begin{align*}
\text{Inputs:} & \quad \mathcal{P} \mathcal{N} = (N, L) \quad \text{the power network} \\
& \quad D \quad \text{the set of damaged items} \\
& \quad R \quad \text{the set of repaired items} \\
\text{Variables:} & \quad y_i \in \{0, 1\} \quad \text{- item } i \text{ is activated} \\
& \quad z_i \in \{0, 1\} \quad \text{- item } i \text{ is operational} \\
& \quad P_i^l \in (-P_i^l, P_i^l) \quad \text{- power flow on line } i \\
& \quad P_i^n \in (0, P_i^n) \quad \text{- power flow on node } i \\
& \quad \theta_i \in (-\frac{\pi}{2}, \frac{\pi}{2}) \quad \text{- phase angle on bus } i \\
\text{Maximize} & \quad \sum_{b \in N^b} \sum_{i \in N_i^b} P_i^n \\
\text{Subject to:} & \quad y_i = 1 \quad \forall i \in N \setminus D \quad (2) \\
& \quad y_i = 0 \quad \forall i \in D \setminus R \quad (3) \\
& \quad z_i = y_i \quad \forall i \in N^b \quad (4) \\
& \quad z_i = y_i \wedge y_j \quad \forall j \in N^b, \forall i \in N_i^b \quad (5) \\
& \quad z_i = y_i \wedge y_{L_i^+} \wedge y_{L_i^-} \quad \forall i \in L \quad (6) \\
& \quad \sum_{j \in N_i^b} P_j^n = \sum_{j \in N_i^b} P_j^n + \sum_{j \in L_i^+} P_j^l - \sum_{j \in L_i^-} P_j^l \quad \forall i \in N^b \quad (7) \\
& \quad 0 \leq P_i^n \leq P_i^l \ast z_i \quad \forall i \in N_i^b \cup N_i^j \quad (8) \\
& \quad -P_i^l \ast z_i \leq P_i^l \leq P_i^l \ast z_i \quad \forall i \in L \quad (9) \\
& \quad P_i^l \geq B_i \ast (\theta_{L_i^+} - \theta_{L_i^-}) + M \ast (\neg z_i) \quad \forall i \in L \quad (10) \\
& \quad P_i^l \leq B_i \ast (\theta_{L_i^+} - \theta_{L_i^-}) - M \ast (\neg z_i) \quad \forall i \in L \quad (11) \\
\end{align*}
\]

Figure 1: A MIP Model for the Unserved Load.
Power Restoration

Restoration Timeline

Power Flow

Time

Relaxation
- MIP
- LNS
- Baseline
A fundamental open question

- Is this “optimal” restoration plan “feasible” operationally?

- These are not normal operating conditions
 - “Maddeningly difficult” to find an AC solution in cold start contexts [Overbye et al, 2004]
- The network is stressed
 - Does the LDC model “overfit”?
- How accurate is the LDC model?
 - Can the LDC solution be turned into an AC solution?
N-3 Contingencies (IEEE-30)

Line Apparent Power Correlation (MVA)

- Small Line Phase Angle
- Large Line Phase Angle

AC Power Flow

LDC Power Flow

IEEE PES'12
N-3 Contingencies

Bus Phase Angle Correlation (rad)

- LDC Power Flow vs AC Power Flow
- Black circles: Small Line Phase Angle
- Red triangles: Large Line Phase Angle
N-3 Contingencies

Line Reactive Power Density

- Small Line Phase Angle
- Large Line Phase Angle

Line Count (log scale)

AC Reactive Power Flow (MVar)

-145 -105 -75 -45 -15 5 25 45 65 85

NICTA Copyright 2012

From imagination to impact
Power Restoration

DC Restoration Timeline

Restoration Action

DC Power Flow (MW)

LDC–ROP
Power Restoration

AC Restoration Timeline

AC Power Flow (MW)

Restoration Action

HELP WANTED

NICTA Copyright 2012
• Find an approximation of AC power flows that
 • is more accurate than the LDC model
 • is useful outside normal operating conditions
 • reasons about voltage magnitudes and reactive power
 • can be embedded in discrete optimization solvers
 • mixed integer programming solvers

• Applications
 • Power restoration, vulnerability analysis, capacitor placement, expansion planning, …
Outline

- Motivation
- The LPAC Models
- Experimental Results
 - LDC versus LPAC versus AC solutions
 - LPAC Variants
- Capacitor Placement Problem
- Power Restoration
AC Power Flow

\[p_n = \sum_{m \neq n} p_{nm} \]

\[q_n = \sum_{m \neq n} q_{nm} \]

\[p_{nm} = |\tilde{V}_n|^2 g_{nm} - |\tilde{V}_n||\tilde{V}_m| g_{nm} \cos(\theta_n^\circ - \theta_m^\circ) - |\tilde{V}_n||\tilde{V}_m| b_{nm} \sin(\theta_n^\circ - \theta_m^\circ) \]

\[q_{nm} = -|\tilde{V}_n|^2 b_{nm} + |\tilde{V}_n||\tilde{V}_m| b_{nm} \cos(\theta_n^\circ - \theta_m^\circ) - |\tilde{V}_n||\tilde{V}_m| g_{nm} \sin(\theta_n^\circ - \theta_m^\circ) \]
Linear Programming Approximations

• **Hot-Start Context**
 - An AC base-point solution is available

• **Warm-Start Context**
 - Target voltage magnitudes are available and “useful”
 - E.g., from normal operating conditions

• **Cold-Start Context**
 - No useful information is available on voltage magnitudes
Hot-Start LP Approximation

\[
\begin{align*}
\hat{p}_{nm}^h &= |\tilde{V}_n^h|^2 g_{nm} - |\tilde{V}_n^h||\tilde{V}_m^h|g_{nm}\cos(\theta_n^o - \theta_m^o) - |\tilde{V}_n^h||\tilde{V}_m^h|b_{nm}(\theta_n^o - \theta_m^o) \\
\hat{q}_{nm}^h &= -|\tilde{V}_n^h|^2 b_{nm} + |\tilde{V}_n^h||\tilde{V}_m^h|b_{nm}\cos(\theta_n^o - \theta_m^o) - |\tilde{V}_n^h||\tilde{V}_m^h|g_{nm}(\theta_n^o - \theta_m^o)
\end{align*}
\]

- Two approximations
 - \(\sin(x)\) is approximated by \(x\)
 - piecewise approximation of \(\cos(x)\)
Hot-Start LP Approximation

Fig. 1. A Piecewise-Linear Approximation of Cosine using 7 Inequalities.
Warm-Start LP Approximation

• Understanding power flows [Grainger, 94]
 • Phase angle differences determine active power
 • Voltage magnitude differences determine reactive power

• Experiments
 • Per unit system
 • Look at how the equations behave when
 • $g = 0.2$ and $b = 1.0$
 $$|\vec{V}_n| = 1.0, |\vec{V}_m| \in (1.2, 0.8), \theta_n - \theta_m \in (-\pi/6, \pi/6)$$
Warm-Start LP Approximation

Active Power Field

Reactive Power Field

Voltage Difference

Angle Difference (rad)

Voltage Difference

Angle Difference (rad)
Warm-Start LP Approximation

• Assumptions
 • We have target voltages

• Basic approach
 • Active power as in the hot-start model
 • Reactive power should capture voltage magnitudes and phase angles

• Key idea
 • Substitute $|\tilde{V}| = |\tilde{V}^t| + \phi$ into the power flow equations
Warm-Start LP Approximation

- Reactive power

\[q_{nm} = q_{nm}^t + q_{nm}^\Delta \]

- Target part

\[q_{nm}^t = -|\tilde{V}_n|^2 b_{nm} + |\tilde{V}_n| |\tilde{V}_m| b_{nm} \cos(\theta_n^\circ - \theta_m^\circ) - |\tilde{V}_n| |\tilde{V}_m| g_{nm} \sin(\theta_n^\circ - \theta_m^\circ) \]

- Delta part

\[q_{nm}^\Delta = -(2|\tilde{V}_n| \phi_n + \phi_n^2) b_{nm} - (|\tilde{V}_n| \phi_m + |\tilde{V}_m| \phi_n + \phi_n \phi_m) (g_{nm} \sin(\theta_n^\circ - \theta_m^\circ) - b_{nm} \cos(\theta_n^\circ - \theta_m^\circ)) \]
Warm-Start LP Approximation

- **Target part approximation**

\[
\hat{q}_{nm}^t = -|\tilde{V}_n|^2 b_{nm} + |\tilde{V}_n||\tilde{V}_m| b_{nm} \cos(\theta_n^o - \theta_m^o) - |\tilde{V}_n||\tilde{V}_m| g_{nm}(\theta_n^o - \theta_m^o)
\]

- **Delta part approximation**

\[
\hat{q}_{nm}^\Delta = -|\tilde{V}_n| b_{nm} (\phi_n - \phi_m) - (|\tilde{V}_n| - |\tilde{V}_m|) b_{nm} \phi_n
\]
Model 1 The Warm LPAC Model.

Inputs:
\[\mathcal{PN} = \langle N, L, G, s \rangle \] - the power network
\[|\vec{V}^t| \] - target voltage magnitudes
\[cs \] - cosine approximation segment count

Variables:
\[\theta_n^o \in (-\infty, \infty) \] - phase angle on bus \(n \) (radians)
\[\phi_n \in (-|\vec{V}^t|, \infty) \] - voltage change on bus \(n \) (Volts p.u.)
\[\widehat{\cos s_{nm}} \in (0, 1) \] - Approximation of \(\cos(\theta_n^o - \theta_m^o) \)

Maximize:
\[\sum_{(n,m) \in L} \widehat{\cos s_{nm}} \] \hspace{3cm} (M1.1)

Subject to:
\[\theta_s^o = 0, \phi_s = 0 \] \hspace{3cm} (M1.2)
\[\phi_i = 0 \ \forall i \in G \] \hspace{3cm} (M1.3)
\[p_n = \sum_{m \in N \setminus \{s\}} \hat{p}_{nm}^t \ \forall n \in N \setminus \{s\} \] \hspace{3cm} (M1.4)
\[q_n = \sum_{m \in N \setminus \{s\}} \hat{q}_{nm}^t + \hat{q}_{nm}^\Delta \ \forall n \in N \setminus \{s\} \setminus G \] \hspace{3cm} (M1.5)
\[\forall (n,m), (m,n) \in L \]
\[\hat{p}_{nm}^t = |\vec{V}_n^t|^2 g_{nm} - \bar{V}_n^t |\vec{V}_m^t| (g_{nm} \widehat{\cos s_{nm}} + b_{nm} (\theta_n^o - \theta_m^o)) \] \hspace{3cm} (M1.6)
\[\hat{q}_{nm}^t = - |\vec{V}_n^t|^2 b_{nm} - |\vec{V}_n^t| |\vec{V}_m^t| (g_{nm} (\theta_n^o - \theta_m^o) - b_{nm} \widehat{\cos s_{nm}}) \] \hspace{3cm} (M1.7)
\[\text{PWL}\langle \cos \rangle (\widehat{\cos s_{nm}}, (\theta_n^o - \theta_m^o), -\pi/3, \pi/3, cs) \] \hspace{3cm} (M1.8)
\[\hat{q}_{nm}^\Delta = - |\vec{V}_n^t| b_{nm} (\phi_n - \phi_m) - (|\vec{V}_n^t| - |\vec{V}_m^t|) b_{nm} \phi_n \] \hspace{3cm} (M1.9)
Cold-Start LP Approximation

• Simply use the warm-start model with
 • Target voltages at 1.0
 • Use an appropriate ϕ for voltage-controlled generators

• Note that the delta part of reactive power becomes

$$\hat{q}_{nm}^\Delta = -b_{nm}(\phi_n - \phi_m)$$
Extensions of the LPAC Model

- **Range for generators**
 - Simply include a decision variable

- **Removing the slack bus**
 - No need for a slack bus in the LPAC model

- **Shedding load**
 - Simply use decision variables for loads

- **Additional constraints**
 - **Voltages:** \(|V| \leq |V_n^t| + \phi_n \quad \forall n \in N \)
 - **Apparent power:** \((\hat{P}_{nm}^t)^2 + (\hat{q}_{nm}^t + \hat{q}_{nm}^\Delta)^2 \leq |S_{nm}|^2 \)
 - **Reactive power:** \(\sum_{m \in N} \hat{q}_{nm}^t + \hat{q}_{nm}^\Delta \leq q_n \quad \forall n \in G \)
Outline

• Motivation
• The LPAC Models
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
• Power Restoration
Experimental Results

- Wide variety of IEEE and MATPOWER Benchmarks
 - ieee14, mp24, ieee30, mp30, mp39, ieee57, ieee118, ieedd17, mp300
 - Small benchmarks are easy in general
 - IEEE 118 is also easy
 - All LPAC models solved almost instantly (LPs)

- This talk
 - MP300 for scalability and brevity

- Comparison with an AC Solver
 - LDC and LPAC solutions versus an AC solution

- Comparison with alternative linearizations
 - Evaluating the importance of all components
Line Active Power

Line Active Power Correlation (MW)

AC Power Flow

LDC Model

Cold-start LPAC Model
Line Active Power

Table 1: Active Power Flow Accuracy Comparison

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Corr</th>
<th>$\mu(\Delta)$</th>
<th>$\max(\Delta)$</th>
<th>$\delta(\arg\max(\Delta))$</th>
<th>$\mu(\delta)$</th>
<th>$\max(\delta)$</th>
<th>$\Delta(\arg\max(\delta))$</th>
<th>approx(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The LDC Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ieee14</td>
<td>0.9994</td>
<td>1.392</td>
<td>10.64</td>
<td>6.783</td>
<td>6.052</td>
<td>24.33</td>
<td>0.3927</td>
<td>65</td>
</tr>
<tr>
<td>mp24</td>
<td>0.9989</td>
<td>5.659</td>
<td>19.7</td>
<td>23.65</td>
<td>6.447</td>
<td>29.89</td>
<td>6.656</td>
<td>47.06</td>
</tr>
<tr>
<td>ieee30</td>
<td>0.9993</td>
<td>1.046</td>
<td>13.1</td>
<td>7.562</td>
<td>6.406</td>
<td>31.23</td>
<td>0.5646</td>
<td>80.49</td>
</tr>
<tr>
<td>mp30</td>
<td>0.9993</td>
<td>0.2964</td>
<td>2.108</td>
<td>19.36</td>
<td>3.086</td>
<td>19.36</td>
<td>2.108</td>
<td>82.93</td>
</tr>
<tr>
<td>mp39</td>
<td>0.9995</td>
<td>7.341</td>
<td>43.64</td>
<td>6.527</td>
<td>9.566</td>
<td>52.18</td>
<td>12.86</td>
<td>76.09</td>
</tr>
<tr>
<td>ieee57</td>
<td>0.9989</td>
<td>1.494</td>
<td>8.216</td>
<td>8.055</td>
<td>105.8</td>
<td>4193</td>
<td>0.9607</td>
<td>52.56</td>
</tr>
<tr>
<td>ieee118</td>
<td>0.9963</td>
<td>3.984</td>
<td>56.3</td>
<td>44.74</td>
<td>29.2</td>
<td>445.9</td>
<td>6.526</td>
<td>51.96</td>
</tr>
<tr>
<td>ieedd17</td>
<td>0.9972</td>
<td>4.933</td>
<td>201.3</td>
<td>13.84</td>
<td>15.2</td>
<td>215</td>
<td>0.5265</td>
<td>50.71</td>
</tr>
<tr>
<td>ieedd17m</td>
<td>0.9975</td>
<td>4.779</td>
<td>191.1</td>
<td>13.23</td>
<td>14.56</td>
<td>231.3</td>
<td>3.066</td>
<td>51.43</td>
</tr>
<tr>
<td>mp300</td>
<td>0.991</td>
<td>11.09</td>
<td>418.5</td>
<td>90.02</td>
<td>29.35</td>
<td>2859</td>
<td>46.14</td>
<td>67.73</td>
</tr>
<tr>
<td>The LPAC-Cold Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ieee14</td>
<td>0.9989</td>
<td>1.636</td>
<td>5.787</td>
<td>13.13</td>
<td>11.52</td>
<td>35.67</td>
<td>2.623</td>
<td>40</td>
</tr>
<tr>
<td>mp24</td>
<td>0.9999</td>
<td>1.884</td>
<td>6.159</td>
<td>2.933</td>
<td>3.871</td>
<td>17.23</td>
<td>3.837</td>
<td>41.18</td>
</tr>
<tr>
<td>ieee30</td>
<td>0.9998</td>
<td>0.5475</td>
<td>2.213</td>
<td>2.523</td>
<td>5.751</td>
<td>31.33</td>
<td>0.5666</td>
<td>75.61</td>
</tr>
<tr>
<td>mp30</td>
<td>0.9995</td>
<td>0.2396</td>
<td>1.641</td>
<td>15.07</td>
<td>2.402</td>
<td>15.07</td>
<td>1.641</td>
<td>78.05</td>
</tr>
<tr>
<td>mp39</td>
<td>1</td>
<td>2.142</td>
<td>8.043</td>
<td>3.288</td>
<td>4.357</td>
<td>24.78</td>
<td>6.106</td>
<td>43.48</td>
</tr>
<tr>
<td>ieee57</td>
<td>0.9995</td>
<td>0.9235</td>
<td>4.674</td>
<td>9.728</td>
<td>110.1</td>
<td>4500</td>
<td>1.031</td>
<td>46.15</td>
</tr>
<tr>
<td>ieee118</td>
<td>1</td>
<td>0.622</td>
<td>3.708</td>
<td>2.038</td>
<td>5.318</td>
<td>99.61</td>
<td>0.5519</td>
<td>55.31</td>
</tr>
<tr>
<td>ieedd17</td>
<td>0.9999</td>
<td>1.827</td>
<td>30.38</td>
<td>2.088</td>
<td>10.92</td>
<td>420.2</td>
<td>1.029</td>
<td>55.36</td>
</tr>
<tr>
<td>ieedd17m</td>
<td>0.9999</td>
<td>1.475</td>
<td>20.21</td>
<td>1.399</td>
<td>7.766</td>
<td>144.5</td>
<td>2.547</td>
<td>56.79</td>
</tr>
<tr>
<td>mp300</td>
<td>0.9998</td>
<td>2.455</td>
<td>18</td>
<td>8.675</td>
<td>7.104</td>
<td>337.2</td>
<td>6.95</td>
<td>57.21</td>
</tr>
</tbody>
</table>
Bus Angles

LDC Model

Cold-Start LPAC Model
Line Reactive Power

Cold-Start LPAC Model

Warm-Start LPAC Model
Bus Voltages

Bus Voltage Correlation (Volts p.u.)

Cold-Start LPAC Model

Warm-Start LPAC Model
Cosine Approximation

Quality of a Piece–wise Linear Cosine Approximation

Radians

-0.4 -0.2 0.0 0.2 0.4

0.93 0.95 0.97 0.99

- \cos(x) \quad \text{pwl-\cos}(x)

NICTA Copyright 2012
From imagination to impact
Outline

- Motivation
- The LPAC Model
- Experimental Results
 - LDC versus LPAC versus AC solutions
 - LPAC Variants
- Capacitor Placement Problem
- Power Restoration
Importance of g: Reactive Power

Cold-Start LPAC Model ($g=0$)
Importance of g: Bus Voltages

Cold-Start LPAC Model (g=0) Cold-Start LPAC Model
Importance of \cos: Reactive Power

Cold-Start LPAC Model ($\cos=1$)

Cold-Start LPAC Model
Importance of cos: Bus Voltages

Cold-Start LPAC Model (cos=1)
Outline

• Motivation
• The LPAC Model
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
 • Build on top of the cold LPAC model
• Power Restoration
Capacitor Placement

• The Problem
 • place capacitors in a power network to improve voltage stability

• Minimize the number of capacitors subject to
 • lower bounds on the voltages
 • upper bounds on reactive capacitor injection
 • upper bounds on reactive generation injection
Capacitor Placement

Inputs:
- \bar{q}_n^g - injection bound for generator n
- q^c - capacitor injection bound
- $|\bar{V}|$ - minimum desired voltage magnitude

Inputs from The Cold LPAC Model

Variables:
- $q^c_n \in (0, \bar{q}^c)$ - capacitor reactive injection
- $c_n \in \{0, 1\}$ - capacitor placement indicator

Variables from The Cold LPAC Model

Minimize:
$$\sum_{n \in N} c_n$$

Subject to:
- $|\bar{V}| \leq 1.0 + \phi_n \leq 1.05 \quad \forall n \in N$
- $q^c_n \leq Mc_n$
- $q_n \leq \bar{q}_n^g \quad \forall n \in G$
- $q_n = \sum_{n \neq m}^{n} \hat{q}_{nm} + \hat{q}_{nm}^\Delta \quad \forall n \in G$
- $q_n = \sum_{n \neq m}^{n} \hat{q}_{nm} + \hat{q}_{nm}^\Delta \quad \forall n \in N : n \neq s \land n \notin G$

Constraints from The Cold LPAC Model
Experimental Results

• Modified IEEE 57 Benchmark
 • Remove the transformers
 • Remove the synchronous condensers
 • This induces severe voltage problems
 • Impose increasingly tighter voltage lower bounds

• The capacitor placement model
 • Meets all voltage requirements but is an approximation

How well does it do compared to the AC model?
IEEE57: 0 Capacitor
Table 1: Capacitor Placement: Effects of $|\tilde{V}|$ on IEEE57-C, $\overline{q^c} = 30$ MVar

| $|\tilde{V}|$ | min($|\tilde{V}|$) | max($|\tilde{V}|$) | max(q_n) | $\sum c_n$ | Time (sec.) |
|------------|----------------|----------------|-----------|-----------|-------------|
| 0.8850 | 0.000000 | 0.0 | 0.0 | 1 | 1 |
| 0.9350 | 0.000000 | 0.0 | 0.0 | 3 | 8 |
| 0.9600 | 0.000000 | 0.0 | 0.0 | 5 | 156 |
| 0.9750 | -0.000000 | 0.0 | 0.0 | 6 | 177 |
| 0.9775 | -0.000000 | 0.0 | 0.0 | 6 | 139 |
| 0.9800 | -0.000000 | 0.0 | 0.0 | 6 | 75 |
| 0.9840 | -0.000802 | 0.0 | 0.0 | 7 | 340 |
.9600
Bus Voltage Correlation (Volts p.u.)
Bus Voltage Correlation (Volts p.u.)

LL-LDC Power Flow

AC Power Flow
Bus Voltage Correlation (Volts p.u.)

LL-LDC Power Flow

AC Power Flow
Bus Voltage Correlation (Volts p.u.)

AC Power Flow

LL-LDC Power Flow

0.96 0.98 1.00 1.02 1.04

0.96 0.98 1.00 1.02 1.04
Bus Voltage Correlation (Volts p.u.)
Bus Voltage Correlation (Volts p.u.)

AC Power Flow

LL−LDC Power Flow
Outline

• Motivation
• The LPAC Model
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
 • Build on top of the cold LPAC model
• Power Restoration
 • Build on top of the warm LPAC model
Power Restoration

• See Carleton’s talk on Thursday 5:40 – 6:00
 • Just want to make you curious here
Demand Maximization

Inputs:
- p_n^g - maximum active injection for bus n
- p_n^l - desired active load at bus n
- q_n^l - desired reactive load at bus n

Inputs from the Warm LPAC Model

Variables:
- $p_n^g \in (0, p_n^g)$ - active generation at bus n
- $q_n^g \in (-\infty, \infty)$ - reactive generation at bus n
- $l_n \in (0, 1)$ - percentage of load served at bus n

Variables from the Warm LPAC Model

Maximize:
$$\sum_{n \in N} l_n$$

Subject to:
- $p_n = -p_n^l l_n + p_n^g \quad \forall n \in N$
- $q_n = -q_n^l l_n + q_n^g \quad \forall n \in N$
- $q_n^g = 0 \quad \forall n \in N \setminus G$
- $n \neq m$
- $q_n = \sum_{m \in N} \hat{q}_{nm}^t + \hat{q}_{nm}^\Delta \quad \forall n \in G$

Constraints from the Warm LPAC Model
IEEE-30 Contingencies

<table>
<thead>
<tr>
<th></th>
<th>N-9</th>
<th>N-11</th>
<th>N-12</th>
<th>N-13</th>
<th>N-15</th>
<th>N-16</th>
<th>N-17</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDC</td>
<td>7436</td>
<td>6511</td>
<td>5344</td>
<td>6805</td>
<td>5931</td>
<td>7236</td>
<td>6877</td>
<td>66%</td>
</tr>
<tr>
<td>LPAC</td>
<td>9998</td>
<td>10000</td>
<td>9996</td>
<td>9981</td>
<td>9998</td>
<td>10000</td>
<td>9911</td>
<td>99.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N-9</th>
<th>N-11</th>
<th>N-12</th>
<th>N-13</th>
<th>N-15</th>
<th>N-16</th>
<th>N-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDC</td>
<td>14.2</td>
<td>20.14</td>
<td>57.77</td>
<td>73.67</td>
<td>44.54</td>
<td>64.58</td>
<td>67.88</td>
</tr>
<tr>
<td>LPAC</td>
<td>35.96</td>
<td>30.38</td>
<td>57.74</td>
<td>62.83</td>
<td>57.49</td>
<td>66.69</td>
<td>64.73</td>
</tr>
</tbody>
</table>
Power Restoration

AC Restoration Timeline

- Restoration Action
- AC Power Flow (MW)

LDC–ROP
Power Restoration

DC Restoration Timeline

DC Power Flow (MW)

Restoration Action

LDC–ROP
LPAC–ROP
Power Restoration

AC Restoration Timeline

AC Power Flow (MW)

Restoration Action

LDC–ROP

LPAC–ROP

NICTA Copyright 2012
From imagination to impact
Power Restoration

AC Line Overloads

Cumulative Overload (MVA)

Restoration Action

LDC
LPAC+R
LPAC+R+V
Power Restoration

AC Voltage Stability

Cumulative Instability (Volts p.u.)

Restoration Action

LDC
LPAC+R
LPAC+R+V
Conclusion

- **LPAC Models: Linear-Programming approximations**
 - Much more accurate than the LDC model
 - useful outside normal operating conditions
 - reason about voltage magnitudes and reactive power
 - can be embedded in MIP solvers

- **Experimental results**
 - Very high accuracy when compared to AC solutions

- **Case studies**
 - Capacitor placement problem
 - Power Restoration